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Abstract. We study the T = 0 frusmted phase of the ID quantum spin-f system with 
nearest-neighbour and next-nearest-neighbour isotropic exchange knawn as the Majumdar- 
Chosh Hamiltonian. We first apply the coupled-cluster method of quantum many-body theory 
based on a spiral model state to obtain the ground-state energy and the pitch angle. These results 
are compared with accurate numerical results using the density matrix renormalirarion group 
method, which also gives the correlation functions. We also investigate the periodicity of the 
phase using the Marshall sign critenon. We discuss particulmly the behaviour close to the phase 
transitions at each end of the frustrJted phase. 

1. Introduction 

There is currently much interest in quantum spin systems that exhibit frustration. This has 
been stimulated in particular by the work on the magnetic properties of the cuprates which 
become high-T, superconductors when doped. The frustration in these 2D materials arises 
because of antifenomagnetic exchange across the diagonals of the squares as well as along 
the edges. Other 2D frustrated systems are the triangular and Kagom6 lattices. 

In this paper we study a simple 1D spin system which is also frustrated for some range of 
its parameters. This is a spin-112 model with isotropic nearest- and next-nearest-neighbour 
exchange given by 

x = coso  st . slfl + s ino  sI . sl+2 
1 1 

where the sum over 1 is over all N atoms with periodic boundary conditions. We shall also 
use the notation JI = c o s o  and J2 = sino. 

The T = 0 phase diagram of this model is given in figure 1. The antiferromagnetic (AF) 
phase extends over the region -n/2 < w < WMG, where WMG = tan-'(1/2). The point 
WMG is the Majumdar-Ghosh (MG) Hamiltonian (Majumdar and Ghosh 1969a. b; see also 
Haldane 1982) at which the ground state consists of dimerized singlets with a gap to the 
excited states. In a recent paper by two of the present authors (Zeng and Parkinson 1995), a 
dimer variational wavefunction was proposed which is exact at wM0 and gives good results 
for a large range around this point. 

5 Present address: IRC in Superconductivity. University of Cambridge. Madingley Road, Cambridge CB3 OHE. 
UK. 
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Figure 1. T = 0 phase diagram of 
the model. 

Much of the recent work on this system has focused on the transition from a gapless 
'spin-liquid' state which is known exactly at w = 0, to a dimerized regime with a gap 
which is also known exactly at w = OMG. The transition occurs at Jz/J,  = 0.2411(1) 
(w = 0.2366(1) (Okamoto and Nomura 1992)). The same authors have also studied the 
phase diagram in the vicinity of this transition in the anisotropic version of this model 
(Nomura and Okamoto 1993, 1994). 

The frustrated regime is given by OMG < w < OFF, where ow = tan-'(-1/4) = 3.3865 
is the point at which a first-order transition to a ferromagnetic regime occurs. This was first 
studied numerically by Tonegawa and Harada (1987) who found evidence of change in the 
position of the peak of the correlation function as a function of w. Here we shall use a 
variety of methods to investigate the whole of the frustrated regime, including w 

It will be useful to compare our results with those of the classical Hamiltonian. In this 
regime the minimum classical energy is obtained by forming a spiral with a pitch angle 
0 between neighbouring spins, where 0 = cos-'(-J1/4Jz). The classical boundary with 
the AF phase is at = tan-'(l/4) = 0.2450. The real-space periodicity thus increases 
monotonically from two at the AF boundary to infinity at the ferromagnetic boundary. 

n/2. 

2. The CCM formalism 

In a receni paper (Farnell and Parkinson 1994, hereinafter referred to as I), the coupled- 
cluster method (CCM) was applied by two of the present authors to the antiferromagnetic 
(AF) phase. For a description of the CCM applied to spin systems see Bishop eta1 (1991) 
and the references in I. In the AF phase the natural choice of a model state for the CCM is 
the N&l state used in I. 

For the frustrated regime, however, this model state is physically unrealistic and the 
CCM based upon it gives poor results. One possible choice is suggested by the fact that 
when w = ~ / 2  we have 51 = 0 and 52 = 1, so the Hamiltonian (1.1) describes two 
uncoupled antiferromagnetic Heisenberg chains. At this point a 'doubleNkel' model state 
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with a periodicity of four unit cells would be appropriate and would lead to precisely the 
same results as for the single chain (J1 = 1, JZ = 0) with suitable scaling factors. We did 
cany out CCM calculations based on this model state and obtained reasonable results for a 
range of o around 7r/2. These results will be described briefly later. 

Another possible model state is suggested by the classical ground state in this regime. 
For this reason we have performed CCM calculations based on a spiral model state in which 
the pitch angle 8 is taken as a variational parameter. A necessary condition to perform CCM 
calculations is the existence of a complete set of mutually commuting creation operators so 
that an arbitrary state of the system can be constructed starting from the model state. We 
obtain these as follows. 

The spiral model state is taken to have all spins aligned in the XZ plane with the nth 
spin making an angle ne with the Z axis. We then introduce local axes such that each 
atom is in the quantum spin state I-). We use the usual notation I+) for the states with 
eigenvalues of sz equal to ii. Using the local axes the Hamiltonian (1.1) becomes 

-H = J ~ / ~ C ~ [ C O S ( B )  - II(s;s;+~ +S,'S,++~) + [cos(e) + II(S;S:+~ + 
i 

+ 2sin(@)(s; +S:)(S;+~ +4cos(e)s:s:+,) 

+ J~/~JJIcos(~~) - I I ( s ;~ .~  +si+&) +  COS(^^) + 11(s;& +S~+S;+~) 

+ 2sin(B)(s; + - s:-~) -t ~COS(~B)S;S:+~I.  (2.1) 
i 

This equation contains terms which have an odd number of spin-flips multiplied by a 
coefficient sin(@) or sin(%'). By symmetry the ground-state energy E, will be an even 
function of 8, which suggests that these terms should not contribute to Es. We have 
confirmed explicitly that this is correct for the CCM approximation scheme described in the 
following section, and for clarity we shall omit these terms from 71 from now on. 

2.1. Approximotion schemes 

We shall work with Pauli spin operators U;, related to the spin angular momentum operators 
in the usual way: U: = Zr f ,  CY = x ,  y. z and U: = ;(U: & iur). These definitions apply to 
all sites as there is no partition into different sublattices in this scheme. The Hamiltonian 
of (1.1) becomes 

-H = J , / ~ C ~ [ C O S ( B )  - II(U;U;~ +U:&) + [cos(e) + II(U;UA~ + u;u;~) 

+ COS(~)U;U,!+~I + ~ ~ / 4 C t [ ~ ~ ~ ( 2 e )  - II(u;u;,~ + u,'uA~) 
+ [cos(ze) + II(U;U& + u;u;z) + COS(Z~)U:U:+,). 

i 

(2.2) 

In the CCM the true ground state is written 

I Y )  = eSI@). (2.3) 

The CCM correlation operator S is constructed entirely out of creation operators with respect 
to the model state, i.e. a linear combination of all possible C:, where each C: is a product 
of creation operators from {U:] consistent with the conserved quantities. The Hamiltonian 
of (2.2) contains only terms that involve an even number of spin flips. This means that all 
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terms in es and hence in S should only involve even numbers of U+ operators. Note that 
this would not be true had the sin(@) and sin(20) terms not been neglected, and this point 
is considered further below. 

We shall use the following approximation schemes, all of which were described in I. 
(i) Full SuB2. In this scheme S includes all possible products of two spin-flip operators: 

(2.4) 

where i runs over all N sites and r is an integer with lrl < N/2. By symmetry b-, = b,. 
(ii) SUB2-3. This is a subset of full SUB2 in which all b, are set to zero except b*l 

and b*2: 

Using the same notation - as in I, we calculate the similarity transform with respect to S 
of the spin operators. For example 

5: = e-su?es, (2.6) 

Using these the transformed Hamiltonian f i  can be obtained. Operating on the ground-state 
Schrijdinger equation 

fil@p) = E,I@) (2.7) 

with (@I then gives the following equation For the ground-state energy per spin in either 
approximation as 

E J N  = J ~ / ~ { c o s ( ~ )  + [cos(@) - l ib , )  + J , / ~ c o s ( ~ ~ )  + [COS(~B) - lib2). (2.8) 

To find bl and b? we obtain a set of coupled non-linear equations for the coefficients 
retained in each of the approximation schemes by operating on (2.7) with (@IC,, where C, 
is the Hermitian conjugate of one of the strings of creation operators (combinations of U:) 

present in S. 
Lastly in this section we note that if odd numbers of spin flips had been allowed there 

would be a term in S of the form a Ci U:. We have performed calculations in the SuB2-3 
approximation in which the extra sin(@) and sin(20) terms were retained in the Hamiltonian. 
In this case a = 0 is the only physically reasonable solution, and the extra terms give zero 
contribution to the ground-state energy. 

3. The coupled non-linear equations 

Using the S given by (2.4), we operate on (2.7) with Ziu;u;,, and obtain the full SUB2 
equations: 
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WMG 

......... variational 

Figure 2. Pitch angle B as a function of o obtained by various methods 

where 

(3.74 

(3.2b) 

(3.34 

(3.3b) 

with p = h l ,  6 = 1 2  and s is any positive or negative integer. The solution of (3.1) is 
given in section 4. 

For the SUB2-3 approximation scheme (3.1) reduces to the pair of coupled non-linear 
equations 

J~([cos(~) - 1](1 + 2b; - 3b:) - 4bi  COS(^) + 2b2[cos(8) + 11) 
+ Jz{[l  - ~0~(28)]4blb2 - 861  COS(^^) + 2bi[cos(20) + 11) = 0 (3.4) 

and 

Ji[[l - ~0~(B)]4bibz - 862 COS(@ + Zbr[cos(B) + l]} 
+ J ~ ( [ C O S ( ~ B )  - 11(1 + 2b: - 3bf) - 4 b Z c ~ ~ ( 2 8 ) ]  = 0. (3.5) 

Equations (3.4) and (3.5) can be solved numerically and hence E,/" obtained in the SUB2-3 
approximation for a given B. Finally, 8 is varied to find a minimum value for E , / N .  
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The results for 8 as a function of w are shown in figure 2. We observe that the value 
of 8 obtained by this method remains close to x/2 over a much wider range of w than in 
the classical calculation. We mentioned earlier that calculations based on a ‘doubleNtel’ 
model state have been carried out. As can now be easily understood, the results were in 
good agreement with the ones based on the spiral model state over quite a wide range of w 
around n/2. 

Figure 3. Ground-sate enem per spin as a function of w. Open circles are exact results. The 
full circle is the CCM terminating point. 

The results for the ground-state energy per spin are shown in figure 3 and are compared 
with the values obtained by direct diagonalization of a chain of 20 spins, the results of 
spin-wave theory (SWT), and also with a ‘classical’ result which is the expectation value 
of the Hamiltonian in the classical ground state. The exact results at o = WG and o = IT 
are also marked on this figure. 

The full SUB2 equations can be solved numerically by first performing a Fourier 
transform, as in I. DetaiIs are given in appendix 1. The results are similar to the SUEZ-3 
results and are also shown in the figure. Both SUB2 and SUB2-3 have a ‘terminating point’ 
at which the spiral solution ceases to exist. The terminating point for SUB2 is shown on 
figure 3. 

4. DMRG study of the periodicity 

We next turn to the density matrix renormalization group (DMRG) method in order to 
perform a numerical study of the periodicity that can be compared with the CCM results 
discussed above. We achieve this by accurately calculating the position of the peak of the 
Fourier-transformed ground-state correlation function (Bursill et a1 1995). 
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4.1. The DMRG method 

The DMRG was introduced in a series of papers by White and co-workers (White 
and Noack 1992, White 1992, 1993) and a highly successful application to the spin-1 
antiferromagnetic chain (White and Huse 1993) established the DMRG as the method of 
choice for studying the low-energy physics of quantum lattice systems in one dimension. 
White (1993) describes in great detail efficient algorithms for calculating low-lying energies 
and correlation functions of spin chains, so we will only briefly describe the method here. 
We restrict our discussion to the infinite lattice algorithm (White 1993) which was used in 
OUT calculations. 

The DMRG is an iterative truncated basis procedure whereby a large chain (or 
superblock) is built up from a single site by adding a small number of sites at a time. At each 
stage the superblock consists of system and environment blocks (determined from previous 
iterations) in addition to a small number of extra sites. Also determined from previous 
iterations are the matrix elements of various operators such as the block Hamiltonians and 
the spin operators for the sites (at the end(s) of the blocks) with respect to a truncated basis. 
Tensor products of the states of the system block, the environment block and the extra 
sites are then formed to provide a truncated basis for the superblock. The ground state I@) 
(or other targeted state) of the superblock is determined by a sparse matrix diagonalization 
algorithm. 

At this point, correlation functions, local energies and other expectation values are 
calculated with respect to I*.). Next, a basis for an augmented block, consisting of the 
system block and a specified choice of the extra sites, is formed from tensor products of 
system block and site states. The augmented block becomes the system block in the next 
iteration. However, in order to keep the size of the superblock basis from growing, the 
basis for the augmented block is truncated. We form a density matrix by projecting I@) (@I 
onto the augmented block which we diagonalize with a dense matrix routine. We retain 
the most probable eigenstates (those with the largest eigenvalues) of the density matrix in 
order to form a truncated basis for the augmented block that is around the same size as the 
system block basis. Matrix elements for the Hamiltonian and active site operators, together 
with any other operators that are required for, say, correlation functions are then updated. 

The environment block used for the next iteration is usually chosen to be a reflected 
version of the system block. The initial system and environment blocks are chosen to be 
single sites. 

The accuracy and computer requirements of the scheme is fixed by n,, the number of 
states retained per block (of good quantum numbers) at each iteration; n, determines the 
truncation error, which is the sum of the eigenvalues of the density matrix corresponding 
to states which are shed in the truncation process. The error in quantities such as the 
ground-state energy scale linearly with the truncation error (White and Huse 1993). 

4.2. Application of the DMRG to the frustrated spin-1 12 chain 

We have applied the infinite lattice DMRG algorithm to (1.1) using a number of superblock 
configurations and boundary conditions. All the interactions (intrablock, interblock and 
superblock Hamiltonians) commute with the total z spin S+ xi S;, so S+ is a good 
quantum number which can be used to block diagonalize the system, environment and 
super blocks. For even numbers of sites, the ground state of the superblock I@) is a singlet 
with zero total spin so we only need to consider superblock states with S+ = 0. We found 
that the most CPU efficient configuration was the standard open ended superblock of the 
form system-site-site-environment (White 1993). 
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As mentioned, in applying the DMRG to (1.1). we are concerned with the correlation 
function 

cj, = (SJS,') 
and hence its Fourier transform 

We are particularly interested in q'. the value of q where c(q) has its peak. This leads 
to a natural (working) identification of the ground-state periodicity with %/q* which was 
given in (Bursill er ~l 1995) where another frustrated spin model, the spin-1 model with 
bilinear and biquadratic exchange, was studied. 

In practice, Cj, is calculated with j and 1 approximately equidistant from the centre of 
the superblock and far from the ends of the block so as to avoid end effects. In forming 
?(q) we calculate Cj, for 0 < l j  - I 1  < 60. The algorithm is iterated until these quantities 
converge, We test the algorithm by exactly calculating C,, for finite chains of up to 20 sites 
using the Lanzcos method and ensuring that these results are reproduced by the DMRG. 

Bursill ef ~l (1995) noted that there are two impediments to an accurate calculation of 
(4.2). Firstly, for given j and I ,  we must have ns sufficiently large that C,, is accurately 
determined. Secondly, for given q,  we must retain enough accurately calculated CJ in 
truncating the infinite series to ensure an accurate result. It was found (Bursill et a1 1995) 
that if the system has a significant energy gap and exponentially decaying correlation 
functions with a short correlation length, then the CJ converge rapidly with n, and the 
Fourier series converges very rapidly. On the other hand, in critical or near-critical regions 
where the energy gap is small or zero and the correlation functions decay algebraically or 
have a large correlation length then convergence is very slow. 

By choosing n, up to 90, it is found that the main source of inaccuracy in calculating 
c(q) in these regions is Fourier series truncation. We plot ?(q) as a function of q for 
various values of Jz/ J1 in figure 4. 

As mentioned, it was determined using exact diagonalization and finite-size scaling 
methods (Okmoto and Nomura 1992) that the model is critical (gapless with algebraically 
decaying correlation functions) for 0 < &/JI < t a n W C  and gapped beyond this region 
where tanw, = 0.2411(1). Correspondingly, we find that e(q) converges slowly and has 
oscillation due to Fourier series truncation in and around the critical region. In the region 
0.3 < 52/51 < 2 we find that ?(q)  converges rapidly to a smooth function. 

Now at the extreme point where J I  = 0 we have two decoupled Heisenberg chains and 
so Cjr vanishes if j and 1 lie on different sublattices but Cj, decays algebraically on a given 
sublattice. We in fact find that c(q) converges slowly for &/JI > 2.5, indicating that there 
may be a finite interval around the J, = 0 point where the model is critical. 

We next turn to the question of periodicity in the ground state. As mentioned, we define 
the periodicity in terms of the position q* at which c(q) has its peak. A plot of 4* as a 
function of w is included in figure 2. We see that the simple analytical CCM result for the 
pitch angle improves dramatically upon the classical result. Also, we see that the dimer 
variational wavefunction (Zeng and Parkinson 1995) gives an excellent estimate of the pitch 
angle in a region to the right of the solvable point. 

q' converges very rapidly with n p  (the number of Fourier coefficients used in forming 
(4.2)) and n, in the region 0.3 < &/JI < 2 and we can accurately determine the threshold 
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Figure 4. Fourier-transformed correlation functions for various values of h J J l  obtained from 
the DMRG. 

(the onset of the spiral phase) 6 at which q x  begins to move away from iz (as the periodicity 
begins to change from 2 to 4). Such a threshold was found in (Bursill et al 1995) as the 
biquadratic interaction was increased relative to the bilinear interaction. Again, q* could 
be accurately determined near the threshold. Using the same analysis as in Bursill et af  
(1995). we find 

t a n 6  = 0.52063(6). (4.3) 
This is to be compared with the classical threshold (0.25) and the terminating point from 
the CCM theory (0.623). 

In a recent preprint, Chitra et al (1994) have studied the extension of (1.1) where 
there is also dimerization 8 such that nearest-neighbour exchange carries a factor of 1 + 6 
and 1 - 6 on successive bonds. They conjectured that there is a disorder line given by 
J 2 / J I  = $ ( I  - 6) such that, in the 6-J2/.I, plane, the structure factor has its peak at IT 
below the line and decreases from j~ to  IT/^ as J2 f J ,  is increased above the line. In the 
case (1.1) of no dimerization (6  = 0) gives tan G = 112 (i.e. the threshold is the exactly 
solvable point). 

Now at the solvable point the ground state is a perfect dimer where spins form a singlet 
with their dimer pair but are otherwise uncorrelated. The correlation function is 

. .  
l = J  1 

cij = -$ i and j on the same dime1 1: otherwise. 
The Fourier transform is therefore 

t ( 4 )  = : ( I  -cosq) (4.4) 

whence ?(n) = -1/4 # 0 so, unless ?‘‘(IT) is highly singular at the threshold, the 
threshold (i.e. the point where ?(IT) vanishes) cannot occur at the solvable point. This is 
borne out by our result (4.3). 
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4.3. Further interpretation of the spiral phase 

We have defined the ground-state periodicity and the spiral phase ((3) in terms of the 
peak position of the Fourier-transformed correlation function. It has, however been 
shown (Schollwock et a1 1995) that further insight into disorder and incommensurate spin 
distortions in the ground state can be gained by investigating the correlation function in real 
space. In table 1 we list the correlation function in real space C(r)  for Jz / J I  =0.49, 0.5 
(the solvable point), 0.51 and 0.5206. . . (the threshold). (As we shall see, in the gapped 
region, the ground state has broken translational symmetry and C ( r )  is defined to be the 
average of Cj j+r over a number of the sites j in the middle of the chain). 

Table 1. Correlation function in real space C ( r )  for various valucs of JzfJ i  obtained from the 
DMRG. 

r 0.49 0.5 0.5 I Ian6 

0 0.25 0.25 0.25 0.25 
1 -0.127 -0.125 -0.123 -0,121 
2 0.00386 0 -0.0039 -0.00806 
3 -0.00237 0 0.00234 0.00477 
4 0.000892 0 -0.000764 -0.00143 
5 -0.000571 0 0.000425 0.000714 
6 O.wo22 0 -0.000119 -0.000145 

We see that modulations begin to appear for 52/51 values between the solvable point 
and the threshold where C(2) changes sign, i.e. the Majumdar-Ghosh point is a disorder 
point, separating phases of commensurate and incommensurate correlations (in real space). 
Following Schollwiick et a1 (1995), the threshold (3, where incommensurate spin oscillations 
would begin to be observed (experimentally) in the structure factor, is identified as a Lifshitz 
point. We would expect that in the limit of large spin S, the classical disorder point, the 
quantum disorder point and the Lifshitz point would merge, there being a single point 
separating commensurate and incommensurate phases both in terms of real and momentum 
space. 

4.4. Translatiom1 symmetry breaking in the ground state-u dimer order parameter 

As mentioned above, Okamoto and Nomura (1992) calculated the critical point tano, = 
0.2411(1) separating gapped from gapless phases. Chitra et a1 (1994) calculated the energy 
gap using the DMRG and deduced tano, = 0.298(1), a result which is incompatible with 
that of Okamoto and Nomura (1992). It is, however, known (White 1993, Bursill et a1 
1995, Schollwock eta1 1995) that it  is difficult to obtain accurate energies with the DMRG 
for critical or near-critical systems. This is again borne out when we apply the DMRC to 
the calculation of another order parameter that characterizes this phase transition. 

It is known that the ground state for the Heisenberg model Jz  = 0 has no symmetry 
breaking whereas at the Majumdar-Ghosh point 52 = J,/2 the ground state has broken 
translational symmetry, the correlator Cjj+l equating to 0 and -114 on successive bonds 
U, j + 1). To measure this broken symmetry, we define a dimer order parameter D by 
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0 . 5  1 1 . 5  2 2 . 5  3 

Figure 5. Dimer order pammeter D as a function of 3 2 / 3 1  obtained f” the DhlRG. 

and D 
D ( N )  converges very slowly in and around the critical region 0 < & / J I  < 0.35 and 

rapidly (with respect to both N and n,) around the threshold 0.45 < Jz/J1 .c 1. A plot of 
D against J 2 / J 1  for n, = 40 is given in figure 5. We note that D is maximal at around 
J z / J l  % 0.58. i.e. neither the disorder point (0.5) nor the Lifshitz point (0.52.. .). The fact 
that D exceeds 1/4 to the right of the disorder point is indicative of the incommensurate 
oscillations whereby the values of Cj ,+I on successive bonds (j, j + 1) can have opposite 
sign. We see that the critical point is not well defined and only qualitative information 
about the phase transition can be deduced from this procedure. We shall attempt to address 
the question of how the DMRG can be adapted to study critical phenomena in future 
publications. 

limN,, D ( N ) ,  where N is the size of an even open chain. 

5. The Marshall sign results 

An additional method of studying the periodicity of the ground state in the frustrated phase 
is by means of the Marshall-Peierls (Marshall 1955) sign criterion. Preliminary results were 
reported in an earlier paper (2eng and Parkinson 1995) so a detailed description will not be 
given here. We have now obtained results for an open chain of 16 atoms and these confirm 
and extend those of shorter chains. 

In figure 6 we show the parameter pi for i = 1.2,3,4, corresponding to a periodicity 
of 2i in the 16 atom chain. This parameter will be close to 1 if the ground state ‘conforms’ 
to the given periodicity and will be close to 0.5 if the conformity is poor. The main features 
are as follows. 

For o in the range 0 < w < WMG (outside the frustrated regime) p1 is very close to 1. 
For UMG < o there is an extended region in which f i  is closest to 1. An interesting and 
totally unexplained feature is the shallow double minimum in the value of pz for o near 
n/4, which was also observed for shorter chains. At w % 2.74 there is a smooth crossover 
to a state in which f i  is largest and finally a more complicated behaviour as o approaches 
WF. An enlarged picture of the latter region is shown in figure 7. The sharp changes in 
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Figure 6. Marshall sign parameters pi as a function of o. 

p3 at o % 2.82 and 2.85 are caused by the crossing of a quintuplet state to become the 
ground state between these two values. This may be a 'small-N' effect, although even here 

is larger than the other pi. Finally, we observe a region closer to WFF in which p4 is the 
largest. Results in this area are difficult to obtain because there are many states lying close 
to the ground state and convergence is extremely slow. 

Nevertheless, these results do suggest that the periodicity in the frustrated regime 
increases as the ferromagnetic boundary is approached. At present, the quantum system 
looks rather different to the classical as the change in periodicity occurs as a sequence of 
crossovers rather than smoothly. However, the chains are still relatively short and it may 
well be that in  the large-N limit the behaviour would approximate more closely to the 
classical. 

6. Conclusion 

The quantum mechanical behaviour of the frustrated phase of this system is clearly rather 
complex. The picture that is beginning to emerge is that the variation in periodicity with w 
that is characteristic of the classical ground state may well survive partially in the quantum 
system. However, there are clearly many differences in detail and also some completely 
new features. 
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Figure I. Enlarged p a i  of figure 6 showing region close to q 

The main difference in detail is that the periodicity of the quantum system, as predicted 
by the coupled-cluster method and the variational method and confirmed by the DMRG 
results, remains closer to n/2 over a much wider range of w than does the classical system. 
Another difference, suggested by the Marshall sign calculations, is that the changes in 
periodicity close to the ferromagnetic boundary may occur less smoothly. 

The behaviour of the quantum system close to the Majumdar-Ghosh point is quite 
different, as there is no classical analogue of the highly dimerized nature of the ground 
state. 
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Appendix 1. Solution of the full SUB2 equations 

The full SUB2 equations (3.1) can be solved using Fourier transforms as described in 
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Appendix A of I. The result is 

(Al.1) 

(A1.2) 

These equations are then solved numerically by conshvcting self-consistency equations 
in the coefficients bl and bz and also XI and XZ. Again 6' is varied to find the minimum 
E, .  
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